
4OR manuscript No.
(will be inserted by the editor)

LocalSolver 1.x

A black-box local-search solver for 0-1 programming

Thierry Benoist · Bertrand Estellon ·
Frédéric Gardi · Romain Megel ·
Karim Nouioua

Received: date / Accepted: date

Abstract This paper introduces LocalSolver 1.x, a black-box local-search solver for

general 0-1 programming. This software allows OR practitioners to focus on the model-

ing of the problem using a simple formalism, and then to defer its actual resolution to a

solver based on efficient and reliable local-search techniques. Started in 2007, the goal of

the LocalSolver project is to offer a model-and-run approach to combinatorial optimiza-

tion problems which are out of reach of existing black-box tree-search solvers (integer

or constraint programming). Having outlined the modeling formalism and the main

technical features behind LocalSolver, its effectiveness is demonstrated through an ex-

tensive computational study. The version 1.1 of LocalSolver can be freely downloaded

at http://www.localsolver.com and used for educational, research, or commercial

purposes.

Keywords Combinatorial optimization · 0-1 programming · Local search · Black-box
solver · OR software

Mathematics Subject Classification (2000) 90C27 · 90C10 · 90C90 · 90B90

1 Introduction

In combinatorial optimization, the tree-search techniques consist in exploring the so-

lution space by iteratively instantiating variables composing a solution vector. Their

practical efficiency relies on their ability to prune the tree search, which has an ex-

ponential size in the worst case. Founded on these techniques, Integer Programming

The work of B. Estellon and K. Nouioua was supported in part by the ANR grant OPTICOMB
(ANR BLAN06-1-138894). T. Benoist, F. Gardi, R. Megel extend special thanks to Dr. Etienne
Gaudin, director of Bouygues e-lab, for his support and encouragements.

T. Benoist, F. Gardi, R. Megel
Bouygues e-lab, Paris, France
E-mail: {tbenoist, fgardi, rmegel}@bouygues.com

B. Estellon, K. Nouioua
Laboratoire d’Informatique Fondamentale – CNRS UMR 6166,
Université Aix-Marseille II – Faculté des Sciences de Luminy, Marseille, France
E-mail: {bertrand.estellon, karim.nouioua}@lif.univ-mrs.fr



2

(IP) is surely one of the most powerful tools of operations research. Although limited

when faced with large-scale combinatorial problems, its success among practitioners is

mainly due to the simplicity of use of IP solvers: the engineer models its problem as an

integer program and the solver solves it by branch & bound (& cut). Following this ob-

servation, a recent trend in Constraint Programming (CP) aims to promote the design

of effective autonomous CP solvers. Indeed, this “model-and-run” approach, when ef-

fective, reduces considerably the development and maintenance efforts of optimization

softwares.

In contrast, Local Search (LS) consists in applying iteratively some changes (called

moves) to a solution so as to improve the objective function. Although incomplete, this

technique is widely appreciated because it allows operations researchers to obtain good-

quality solutions in short running times (of the order of the minute). However, designing

and implementing local-search algorithms is not straightforward. The algorithmic layer

dedicated to the evaluation of moves is particularly difficult to engineer, because it

requires both an expertise in algorithms and a dexterity in computer programming.

For a survey on the LS paradigm and its applications, the reader is invited to consult

the book by Aarts and Lenstra (1997).

This paper introduces LocalSolver 1.x, a black-box local-search solver for general

0-1 programming (with nonlinear constraints and objectives). This software allows OR

practitioners to focus on the modeling of the problem using a simple formalism, and

then to defer its actual resolution to a solver based on efficient and reliable local-search

techniques. Started in 2007, the goal of the LocalSolver project is to offer a model-

and-run approach to combinatorial optimization problems which are out of reach of

existing IP/CP autonomous solvers. The current version (LocalSolver 1.1) is especially

designed for tackling matching, partitioning, packing, covering problems. Distributed

freely under a BSD licence1, the binaries of the software are available for the architec-

ture x86 and three operating systems Linux 2.6, Mac OS X 10.5 (Leopard), Windows

XP. The software can be used for educational, research or even commercial purposes

without permission from the authors.

The paper is organized as follows. After a review of related work in the literature,

the modeling formalism associated with LocalSolver 1.x is presented. Then, the solver

is presented and the main ideas on which it relies are outlined. In order to demonstrate

the effectiveness of our solver, the results of an extensive computational study realized

with a dozen of academic and industrial benchmarks are outlined.

2 Prior works and contributions

A local-search heuristic is designed according to three layers (Estellon et al 2009):

search strategy, moves, evaluation machinery. Our past experiences in engineering high-

performance local-search algorithms (Estellon et al 2006, 2008, 2009; Benoist et al

2009a) have convinced us that neglecting one of these three layers may yield a signifi-

cant decrease in terms of performance. Then, designing and implementing local-search

heuristics is a complex, time-consuming task for OR practitioners.

Most proposals made to offer tools or reusable components for local-search program-

mers take the form of a framework handling the top layer of the algorithm, namely

metaheuristics (see for example Cahon et al (2004); Di Gaspero and Schaerf (2003)). In

1 http://www.localsolver.com



3

this case, moves and associated incremental algorithms are implemented by the user,

while the framework is responsible for applying the selected parameterized metaheuris-

tic. However, designing moves and implementing incremental evaluation algorithms

represent the largest part of the work (and of the resulting source code); from our

observations, these two layers consume respectively 30% and 60% of the development

times. Hence, these frameworks do not address the hardest issues of the engineer-

ing of local-search algorithms. Two softwares aim at answering to these needs: Comet

Constraint-Based Local Search (CBLS) (Van Hentenryck and Michel 2005) (and its an-

cestor Localizer (Michel and Van Hentenryck 2000)) and iOpt (Voudouris et al 2001).

These softwares allow an automatic evaluation of moves, but the implementation of

these moves remains the responsibility of the user. Then, to the best of our knowledge,

no effective black-box local-search solver is available today for tackling large-scale real-

life combinatorial optimization problems, as known in IP. Van Hentenryck and Michel

(2007) have recently described a synthesizer of local-search heuristics from high-level

models, but this feature is not yet available in Comet (Deville and Schaus 2010); a

generic swap-based tabu search procedure (Comet Tutorial 2010, pp. 330–331) is avail-

able in Comet CBLS 2.1, which can be used as black box for tackling integer models.

Note also that some of the best solvers for Satisfiability Testing (SAT) or Pseudo-

Boolean Programming (PB) rely on stochastic local search (see for example Walksat

(Selman et al 1996) and WSAT(OIP) (Walser et al 1998)), but these solvers are not

suited for real-life combinatorial optimization and thus rarely used by OR practitioners.

Our approach to autonomous LS is guided by the following fundamental principle:

the LS solver must work as a LS practitioner works. This implies a major difference

compared to the above frameworks or solvers: LocalSolver performs structured moves

tending to maintain the feasibility of solutions at each iteration, whose evaluation is

accelerated by exploiting invariants induced by the structure of the model. Then, the

main specificities of LocalSolver 1.x are to provide: a simple mathematical formalism to

model the problem in an appropriate way for LS resolution, and an effective black-box

LS-based solver focused on the feasibility and the efficiency of moves.

3 Modeling formalism

LocalSolver’s modeling formalism (named LSP for “Local Search Programming”) is

close to classical mathematical programming formalisms like 0-1 integer programming

or pseudo-boolean programming but enriched with common mathematical operators,

making it easy to understand by OR practitioners. In the LSP format, a program

consists of: decision variables, intermediate variables, constraints and objectives. As

an example, here is described an artificial toy problem which can be classified as a

bin-packing problem. We have 3 items x, y, z of height 2, 3, 4 respectively to pack

into 2 piles A, B knowing that B already contains an item of height 5. The goal is to

minimize the height of the largest pile.

xA <- bool(); yA <- bool(); zA <- bool();
xB <- bool(); yB <- bool(); zB <- bool();
constraint booleansum(xA, xB) = 1;
constraint booleansum(yA, yB) = 1;
constraint booleansum(zA, zB) = 1;
heightA <- sum(2xA, 3yA, 4zA);
heightB <- sum(2xB, 3yB, 4zB, 5);
objective <- max(heightA, heightB);



4

minimize objective;

The statement bool() creates a boolean decision variable. For instance, the variable

xA is true when item x is assigned to pile A. In this 1.x version, only boolean decision

variables are allowed. Then, the operator <- is used to define intermediate variables

(for example, the height of each pile), which can be boolean or integer. The keyword

constraint prefixes each constraint definition; here the three constraints ensure that

each item is assigned to exactly one pile. In the same way, the keyword minimize

prefixes the objective of the program.
Formally, the BNF syntax of a program is:

< lsp > ::= (line)

< line > ::= [< modifier >][< naming >] < expression > ;

< modifier > ::= minimize | maximize | constraint
< naming > ::=< identifier > <-

where < expression > shall be detailed in the following section. Then, below are

described the different kind of lines. The ordering of lines in the program is free,

except when defining lexicographic objective functions.

3.1 Decision and intermediate variables

All decision variables must be declared somewhere in the program. It is done with

operators bool(), introducing boolean variables. Boolean variables are treated as in-

tegers, with the convention false=0 and true=1. We insist on the fact that so far only

boolean variables are allowed as decision variables.
Expressions can be built upon these variables by using the native logical, arithmetic,

or relational operators:

< expression > ::= < identifier > | < scalar > |
< scalar >< expression > |
< operator > ([< arglist >]) |
< expression >< comparator >< expression >

< arglist > ::= < expression > [, < arglist >]

< operator > ::= bool | and | or | xor | not | if |
sum | booleansum | min | max |
product | square | divide | modulo |
abs | distance

< comparator > ::= < | <= | > | >= | = | !=

where < scalar > is a number and < identifier > a variable name.

In summary, LocalSolver uses a functional syntax (only comparators are infixed),

with no limitation on the nesting of expressions. Intermediate variables can be in-

troduced as well with operator <-, either to improve the readability of the model or

to reuse expressions on different lines. Some operators apply only to a certain num-

ber of arguments or to a certain type of variables (see Table 1). For instance, the

not operator takes only one argument whose type must be boolean. The if operator

takes exactly three arguments, the first one being necessarily boolean: if(condition,

value if true, value if false). Operators are strongly typed, which explains the



5

Table 1 Mathematical operators available in LocalSolver 1.1.

operators arity input output

bool 0 - boolean
and n boolean boolean
or n boolean boolean
xor n boolean boolean
not 1 boolean boolean
if 3 mixed mixed
sum n integer integer

booleansum n boolean integer
min n integer integer
max n integer integer

product n integer integer
square 1 integer integer
divide 2 integer integer
modulo 2 integer integer
abs 1 integer integer

distance 2 integer integer
= 2 integer boolean
<= 2 integer boolean
>= 2 integer boolean
< 2 integer boolean
> 2 integer boolean
!= 2 integer boolean

definition of sum and booleansum. On the other hand, since boolean expressions are

actually 0/1 variables, they can be used in all integer operators.

Introducing logical, arithmetic, or relational operators has two important benefits

in a local-search context: expressiveness and efficiency. With such low-level operators,

modeling is easier than with basic IP syntax, while remaining quickly assimilable by

practitioners. Besides, the invariants induced by these operators can be exploited by

the internal algorithms of the LS solver to speed up local search.

3.2 Constraints and objectives

Any boolean expression can be made into a constraint by prefixing the line by constraint.

An instantiation of decision variables is valid if and only if all constraints take value

1, coding for satisfied. When modeling a problem, practitioners should remember that

local search is not suited for solving severely constrained problems: if some business con-

straints are not likely to be satisfied, it is recommended to define them in the objective

function (as soft constraints) rather than as hard constraints. Moreover, LocalSolver

offers a feature making this easy to do: lexicographic objectives.

At least one objective must be defined, using the modifier minimize or maximize.

Any expression can be used as objective. If several objectives are defined, they are in-

terpreted as a lexicographic objective function. The lexicographic ordering is induced

by the order in which objectives are declared. For instance in car sequencing with paint

colors, when the goal is to minimize violations on ratio constraints and, as a second

criterion, the number of paint color changes, the objective function can be directly

specified as: minimize ratio violations; minimize color changes;. This features

allows avoiding the classical modeling workaround where a big coefficient is used to sim-



6

ulate the lexicographic order: minimize 1000 ratio violations + color changes;.

The number of objectives is not limited and can have different directions (minimiza-

tion or maximization).

4 Autonomous local search

The command line for solving the above toy problem, granting 1 second of running

time to LocalSolver 1.1 is:

localsolver.exe io lsp=toy.lsp hr timelimit=1 io solution=toy.sol

Then, the printout on standard output should look like this:

Parsing LSP file toy.lsp...

25 nodes, 6 booleans

3 constraints, 1 objectives

1 phases, 2 threads

strategy : descent

***** Initial feasible solution : obj = ( 9 )

***** Solve phase 1 during 1 sec and 4294967295 itr

* Thread 1 : obj = ( 7 ) in 0 sec, 3 itr

* Thread 2 : obj = ( 7 ) in 0 sec, 3 itr

*** After 1 sec, 260000 itr : best obj = ( 7 ) in 0 sec, 3 itr

Writing solution in file toy.sol...

By default, LocalSolver 1.1 uses a standard descent (Aarts and Lenstra 1997) as

search strategy, with all available autonomous moves. A simulated annealing heuristic

(Aarts and Lenstra 1997) is also available by specifying some options in command line.

The chosen heuristic can be multithreaded (by default, two threads are launched). It

consists in running several resolution instances with different seeds in parallel, synchro-

nizing the best results regularly, and returning the best solution found when the time

limit is reached. Multithreading shall not be seen as a way to speed up the search but

rather as a way to increase the robustness of the solver. Autonomous moves are ran-

domly chosen with a non uniform distribution; this distribution is dynamically tuned

during the search in function of their accepting and improving rates.

The cost of the initial feasible solution found by LocalSolver on this example is 9.

This solution is found by a basic randomized greedy algorithm. As explained above,

LocalSolver is not designed for solving hardly-constrained optimization problems. Thus,

if no initial feasible solution is found by this greedy algorithm, then the user should

consider turning one of the constraints into a first-level objective function. By the

way, this is a fundamental difference with CBLS approaches where a violation measure

is defined for each constraint. We believe that such relaxations are the responsibility

of the user. Typically, for frequency assignment problems, the practitioner can chose

between assigning a frequency to each link while minimizing interferences or ensuring

zero interferences while minimizing the number of unassigned links.

The best solution, found after 3 iterations (and 0 second), has cost 7. During

the second of allocated time, LocalSolver has performed 260 000 iterations in each

thread, which corresponds to the number of moves attempted and also to the number



7

of solutions visited during the search. Ultimately, it creates the file “toy.sol” with the

solution: xA=0; yA=1; zA=1; xB=1; yB=0; zB=0;

x1 <- bool();
x2 <- bool();
x3 <- bool();
y1 <- bool();
y2 <- bool();
y3 <- bool();
sx <- booleansum(x1, x2, x3);
sy <- booleansum(y1, y2, y3);
constraint sx <= 2;
constraint sy >= 2;
obj <- max(sx, sy);
minimize obj;

obj

bool bool bool bool bool bool

x1 x3x2 y1 y2 y3

sysx

≤ ≥

const bsumbsum

minimize

constraint constraint

2

max

Fig. 1 The directed acyclic graph (DAG) induced by a simple model. For each node, the type
(resp. name) of the node is given above (resp. below). Here “bsum” stands for booleansum.

A LSP program, as defined above, can be represented through a directed acyclic

graph (DAG), whose roots are the decisions variables and whose leaves are the con-

straints and objectives (see Fig. 1). Then, the operators used to model the problem

induce the inner nodes of the DAG. These inner nodes are related to “invariants” or

“one-way constraints” in softwares like iOpt (Voudouris et al 2001) or Comet (Van Hen-

tenryck and Michel 2005) (or its ancestor Localizer (Michel and Van Hentenryck 2000)).

With this representation, a solution is a complete instantiation of the root variables.

Applying moves to the current solution consists in modifying the current values of

the decision variables (roots) and evaluating constraints and objectives (leaves) by

propagating these modifications along the DAG.

Following the methodology of Estellon et al (2009), LocalSolver is composed of three

layers: search strategy, moves, evaluation machinery. The design and implementation

of LocalSolver have required a considerable effort in terms of software and algorithm

engineering to reach high performances, which cannot be entirely detailed here. Hence,

our presentation will be focused on the two crucial aspects of the solver: the autonomous

moves and the incremental evaluation machinery.

4.1 Autonomous moves

As suggested in introduction, our ultimate goal is to autonomously perform the moves

that a practitioner would have designed to solve its problem. The simplest possible

move is the k-Flips which randomly flips the value of k (binary) decision variables.

However, the structure of the model often allows to design more appropriate moves.

For instance, when a constraint is set on a sum of boolean variables, a natural move

consists in flipping two booleans of the sum in opposite directions, thus preserving the

value of this sum. We will show in this section that LocalSolver is also able to exploit

more complex patterns, applying autonomous moves that can be viewed as ejection

chains applied to the hypergraph induced by boolean variables and constraints (see



8

Rego and Glover (2002) for more details on ejection chains). These ejection chains

are specialized for maintaining the feasibility of boolean constraints and are a key

component of the effectiveness of LocalSolver 1.x. For example, let us consider the car

sequencing problem (Estellon et al 2006, 2008): cars must be ordered in the production

line so as to minimize a non linear objective. This problem can be modeled as an

assignment problem by defining for each car i and position p a boolean variable xi,p. A

basic neighborhood for this model consists in exchanging the positions of two vehicles.

In terms of variables, exchanging the positions p and q of two cars i and j corresponds to

flipping the 4 boolean variables xi,p, xi,q, xj,q, xj,p which preserves the feasibility of the

4 partition constraints where these variables appear. In a generic way, our autonomous

moves are equivalent to k-moves and k-swaps on packing/covering problems.

Define a constrained sum as a sum involving at least two binary decision variables

either directly or multiplied by a scalar, whose value is constrained by a relational

operator. A data structure is built listing all constrained sums in the DAG and for

each binary decision variable, the list of constrained sums it belongs to. Besides, we

maintain for each constrained sum the set of increasing booleans, namely decision vari-

ables whose change would increase the sum, and the complementary of this set (that

is, the decreasing booleans). Using this structure, we can perform moves trying to find

an alternating path of increasing and decreasing booleans such that two consecutive

variables are involved in the same constrained sum. To obtain an alternating cycle, as

in the above example, we can also enforce the same properties for the last and first

variables in the path. The key idea of such moves, called k-Paths or k-Cycles, is to

iteratively repair modified sums, by applying an opposite change at each step. By main-

taining the feasibility of constrained sums, k-Paths and k-Cycles tend to maintain the

feasibility of the solution, which is crucial for making the search effective. For instance,

when the constrained sums define a complete matching problem, any k-Cycle with k

even will be completed (that is, closed without failing) in O(k) time.

x3 ↓

C3

C5C6

C2

C1 C4

x̄4 ↑

x5 ↓x1 ↓

x̄2 ↑

x̄6 ↑

Fig. 2 A 6-Cycle involving six boolean variables x1, x3, x5 (whose current value is 1) and x̄2,
x̄4, x̄6 (whose current value is 0), and six constrained sums C1, . . . , C6. Each variable belongs
to two sums (for example, x1 belongs to C1 and C6). Now, x1, x3, x5 are decreased (↓) while
x̄2, x̄4, x̄6 are increased (↑). This move preserves the values of the sums, and thus the feasibility
of the constraints.

Changing the definition of constrained sums leads to variants which are of interest

for practically speeding up the convergence of the local search. For instance, for the

selection of the next sum to be repaired, we may also favor sums on which an equal-

ity constraint is set because the move cannot succeed without repairing these sums.

Another variant consists in flipping more than one variable per constraint. This exten-

sion follows the same logic as the generalization from ejection chains to ejection trees



9

(Caseau et al 1999). For instance, it allows ejecting two objects of size 1 when adding

an object of size 2 in a set, in packing problems.

At our knowledge, the design of such autonomous moves, specialized for maintaining

the feasibility of the solution during the move, is novel. They form the key component

of LocalSolver as black box. Indeed, they largely improve the effectiveness of the search

(that is, the convergence toward high-quality solutions) on large-scale structured com-

binatorial problems (as frequently encountered in OR applications), relatively to the

classical k-Flips neighborhood search employed in SAT/PB solvers (Selman et al 1996;

Walser et al 1998). Note that we have recently been informed that specific autonomous

moves are used in IBM ILOG Transportation PowerOps (TPO) software for solving

vehicle routing problems by local search in a model-and-run fashion (Fernandez Pons

2010).

4.2 Incremental evaluation machinery

The first machinery for incremental evaluation was introduced in Localizer (Michel

and Van Hentenryck 2000), the ancestor of Comet (Van Hentenryck and Michel 2005),

and iOpt (Voudouris et al 2001). It is based on the exploitation of invariants induced

by combinatorial operators. Although we claim no novelty for this mechanism, it is

presented here for the sake of completeness, and the specificities of our implementation

are illustrated at the end of the section.

Each node of the DAG implements the following methods: init, eval, commit,

rollback. The method init is responsible of the initialization of the value of the node

according to (the values of) its parents, before starting local search. The specific data

structures attached to the node, used for speeding up its incremental evaluation, are

also initialized by this method. Having applied a move on decision variables, the eval

method is called for incrementally reevaluated the value of a node, when this one is

impacted during the DAG propagation. Then, if the move is accepted by the heuristic,

the commit method is called on each modified node for validating the changes implied

by the move. Otherwise, the move is rejected, and the rollbackmethod is used instead.

As mentioned above, the fast evaluation of moves is obtained by exploiting the

invariants induced by each type of nodes (that is, operators) during the propagation

(Michel and Van Hentenryck 2000). A breadth-first search propagation of the modifi-

cations is performed along the DAG, guarantying that each node is evaluated at most

once. Following a classical observer pattern, the propagation is reduced to impacted

nodes: a node is said to be impacted if some of its parents have been modified. For

example, consider the node z ← a < b with a current value equals to true. This one

will not be impacted if a is decreased or b increased. Then, to each node is associated

an eval method called for computing the new value of the node when impacted. This

method takes in input the list of modified parents (that is, the parent nodes whose

current value has changed). For a linear operator like sum, evaluation is easy: if k terms

of the sum are modified, then its new value is computed in O(k) time. But for other op-

erators (arithmetic or logical), significant accelerations can be obtained in practice. For

example, consider the node z ← or(a1, . . . , ak) with M the list of modified ai’s and T

the list of ai’s whose current value is true. Thus, one can observe that if |M | ̸= |T |, then
the new value of z is necessarily true, leading to a constant-time evaluation. Indeed, if

|M | < |T |, then at least one parent remains with value equals to true; otherwise, there

exists at least one parent whose value is modified from false to true.



10

Here our implementation is focused on the practical, experimental complexity, and

not only on the worst-case complexity. Constant factors do matter: fine algorithmic and

code optimizations improve speed of evaluation by several orders of magnitude. For

instance, the property mentioned previously for maintaining the or operator is, at our

acquaintance, not employed in Comet or iOpt systems. In the same way, in Localizer,

Michel and Van Hentenryck (2000, p. 67) maintains the min operators in O(log k)

time with k the number of operands using classically a binary heap. In LocalSolver, we

distinguish two cases. If the minimum value among the modified operands is lower than

or equal to the current value of the min operator, or if one support remains unmodified,

then the evaluation is optimally done in O(|M |) time with |M | the number of modified

values. Otherwise, the evaluation is performed in O(k) time. In practice, the former case

is by far the most frequent and the number of modified operands is small (|M | = O(1)),

ensuring an amortized constant-time evaluation.

5 Experimental results

LocalSolver was tested on a benchmark mixing academic and industrial problems,

determined before starting the project. We insist on the fact that our purpose is not

to achieve state-of-the-art results for all these problems. The main goal of LocalSolver

is to obtain, as black box, good-quality solutions with short running times (as it can be

done with standard local-search heuristics), in particular when tree-search solvers fail

to find any solution.

The goal of these experiments is to compare LocalSolver to existing black-box

solvers: IBM ILOG CPLEX (the state-of-the-art IP solver) and Comet CBLS (Comet

Tutorial 2010, pp. 330-331) which, although not primarily designed to serve as a black

box, offers a generic swap-based tabu search. IBM ILOG CP Optimizer (CPO) was

tested as well but did not yield competitive results on these problems. The results of

SAT or PB solvers, inappropriate to tackle such structured optimization problems, are

also omitted.

For each problem of this benchmark, the solvers were compared on the same ma-

chine, with the same standard model. All numerical experimentations were performed

on a standard computer equipped with the operating system Windows XP 32 bits

and the chip Intel Core 2 Duo T7600 (2.33 GHz, RAM 2 GB, L2 4 MB, L1 64 kB).

Note that only two cores are available on this computer. As for the model, it is merely

adapted to the grammar of each solver. Thus, LSP and IP models are written using

boolean decision variables, while CP and CBLS models are written using integer de-

cision variables with the available global constraints. For instance, the max operator

is native in Comet and LocalSolver but shall be expressed through inequalities in the

MIP equivalent model. Note that no specific element was added beyond these neces-

sary transformations (like IP valid inequalities). The efficiency of an autonomous solver

is a combination of several factors including the search strategy (for finding a feasi-

ble solution, for optimizing a feasible solution), the bounding and cutting techniques

(for IP solvers), the filtering techniques (for CP solvers), the moves and the incremen-

tal evaluation machinery (for LS solvers), and especially the internal algorithms and

their implementation details. Here each solver is launched with its default parameter

settings, unless explicit mention on the contrary. In particular, no initial solution is

provided to LocalSolver or Comet, and no search strategy or moves are specified: these

choices are the responsibility of the black-box solvers.



11

Each problem addressed in this benchmark is briefly described and the chosen

model is cited or sketched out. Results obtained by the different solvers are reported

on a representative set of instances and the state-of-the-art results found in the litera-

ture (generally obtained by local-search heuristics) are given as a baseline. All results

presented here have been rigorously validated; in particular, having extracted the busi-

ness solution from the mathematical one, all constraints and objective costs have been

checked. All the material used for the benchmark (code, models, results) is available

upon request from the corresponding author.

In all tables below, the line “LocalSolver 1.1” corresponds to the results obtained

by LocalSolver 1.1, the line “CPLEX 12.2” corresponds to the results obtained by IBM

ILOG CPLEX 12.2, the line “CPO 2.3” corresponds to the results obtained by IBM

ILOG CPO 2.3, and the line “Comet CBLS 2.1” corresponds to the results obtained

by the generic CBLS in Comet 2.1. The origin of the “State of the art” line will be

detailed for each problem.

5.1 Car sequencing

The car sequencing problem (Hnich et al 2009) consists in ordering cars on an assembly

line while minimizing violations on ratio constraints. In LocalSolver and CPLEX, the

assignment of cars to positions is modeled with boolean variables and the violations on

each ratio constraint are summed (see Estellon et al (2006)). In Comet, we use integer

(and not boolean) decision variables. Besides, a “sequence” constraint is available in this

language for modeling precisely the car sequencing violations. This global constraint

was necessary to obtain the results given below (the performance of Comet is more

than twice worse on large instances otherwise).

Sample results are presented for 5 instances on Table 2 below: 10-93 (100 vehicles, 5

options, 25 classes), 200-01 (200 vehicles, 5 options, 25 classes), 300-01 (300 vehicles, 5

options, 25 classes), 400-01 (400 vehicles, 5 options, 25 classes), 500-08 (500 vehicles, 8

options, 20 classes). The first 4 instances are available in CSPLib (Hnich et al 2009); the

fifth comes from a benchmark generated by Perron et al (2004). The line “state-of-the-

art” corresponds to the state-of-the-art results, here obtained by the high-performance

local-search algorithm described in Estellon et al (2006). The results presented in the

top (resp. bottom) table have been obtained with a time limit fixed to 60 (resp. 600)

seconds. The cost of the best solution found is given (the symbol “x” is used if no

solution has been obtained within the time limit). In summary, one can observe that

LocalSolver outperforms IP and Comet solvers, especially as the scale of instances

grows (instances with 400 and 500 vehicles induce more than 10 000 boolean decision

variables). The results of CP solvers are not detailed, because not competitive for

tackling this problem: Perron and Shaw (2004); Perron et al (2004) obtain by Large

Neighborhood Search (LNS) a number of violations greater than 500 on instance 500-

08.

A real-world version integrating the constraints and objectives of the paint work-

shop was proposed by the car manufacturer Renault as subject of the ROADEF 2005

Challenge (Estellon et al 2008), which is an OR competition yearly organized by the

French Operations Research Society. Three lexicographic objectives have to be op-

timized in this version: EP = violations on high priority ratio constraints, ENP =

violations on low priority ratio constraints, RAF = violations on paint color changes.

Table 3 contains sample results for 3 instances: X2 = 023-EP-RAF-ENP-S49-J2 (1260



12

Table 2 Sample results for the academic car sequencing problem (minimization).

time limit: 60 s 10-93 200-01 300-01 400-01 500-08
LocalSolver 1.1 10 7 11 13 46
CPLEX 12.2 6 11 27 17 x
Comet CBLS 2.1 7 8 16 18 91

time limit: 600 s 10-93 200-01 300-01 400-01 500-08
LocalSolver 1.1 6 3 6 10 20
CPLEX 12.2 3 3 11 16 104
Comet CBLS 2.1 7 6 10 18 47

State of the art 3 0 0 1 0

Table 3 Sample results for the Renault’s car sequencing problem (minimization).

time limit: 600 s X2 X3 X4
State of the art 0, 192, 66 0, 337, 6 0, 160, 407
LocalSolver 1.1 0, 289, 68 30, 452, 22 4, 244, 676
Comet CBLS 2.1 (relaxed) 799, 1069, 481 1447, 1100, 309 1055, 1888, 651

vehicles, 12 options, 13 colors), X3 = 024-EP-RAF-ENP-S49-J2 (1319 vehicles, 18 op-

tions, 15 colors), X4 = 025-EP-ENP-RAF-S49-J1 (996 vehicles, 20 options, 20 colors).

No IP/CP/SAT solver is able to tackle such instances today (Estellon et al 2008). For

example, CPLEX is not able to find an integer solution after several hours of comput-

ing time. Comet is not able to find solutions too: the line “Comet CBLS 2.1 (relaxed)”

gives the results obtained with models where paint limit constraints are omitted. Here

the state of the art corresponds to the local-search heuristic which won the challenge

(Estellon et al 2008); note that the design and the implementation of this algorithm

required nearly 150 working days to its authors. For instance X2, the resulting LS pro-

gram contains 516 936 variables whose 374 596 are binary decision variables (450 MB

of RAM are allocated per thread during the execution). In both modes, Localsolver

performs between that 1.5 and 4.5 million moves per minute, with an acceptation rate

between 5 and 20% and nearly a thousand improving solutions. Observe that Local-

Solver’s results are comparable to the hand-made variable neighborhood search by

Prandtstetter and Raidl (2008) mixing classical moves and large neighborhood search

by IP; according to its results, LocalSolver would have been ranked among the finalists

of the 2005 ROADEF Challenge.

5.2 Social golfer

The social golfer problem (Hnich et al 2009) consists in assigning persons to groups

over several weeks so as to maximize the number of meetings. Having modeled the

partitioning structure for each week, the calculation of meetings between golfers is

straightforward in each of the considered solvers. A real-life version is encountered at

Bouygues SA for scheduling the managers’ seminars. Sample results are presented on

Table 4. Four classical instances are addressed (2 easy ones and 2 hard ones): 9-3-11 (9

groups of 3 players for 11 weeks), 10-10-3, 10-9-4, 10-3-13. In this case, the objective

is to minimize the number of duplicate meetings. The fifth one, named “seminar”, is

a real-life instance (120 persons over 3 weeks with group sizes between 7 and 9) with

additional constraints on groups and three lexicographic objectives: balancing some

characters into each group (for example, men and women), avoiding the undesired



13

Table 4 Sample results for the social golfer problem (minimization).

time limit: 60 s 9-3-11 10-10-3 10-9-4 10-3-13 seminar
LocalSolver 1.1 0 0 5 3 1, 0, 1082 = 11 082
CPLEX 12.2 x x x x x
Comet CBLS 2.1 2 0 8 6 x

time limit: 600 s 9-3-11 10-10-3 10-9-4 10-3-13 seminar
LocalSolver 1.1 0 0 1 1 1, 0, 1082 = 11 082
CPLEX 12.2 94 140 218 125 3 629 775
Comet CBLS 2.1 1 0 5 3 x

State of the art 0 0 0 0 1, 0, 1082 = 11 082

meetings, maximizing the number of (desired) meetings. For classical instances, the

tabu-search heuristic by Dotú and Van Hentenryck (1999) (implemented in C program-

ming language) currently owns the best results on almost all social golfer benchmarks.

Some dedicated and complex CP approaches (with an emphasis on breaking symme-

tries) obtain similar results (Dotú and Van Hentenryck 1999). For the real-life instance,

the state of the art corresponds to the local-search algorithm which was implemented

by one of the authors as operational solution: a first-improvement descent performing

fast random swaps (one million per second). Due to the quadratic form of the objec-

tive function (a logical “and” must be used for counting meetings), such a problem is

particularly difficult to tackle by IP techniques; indeed, its linearization induces a very

large number of variables (hundreds of thousands). Then, despite a running time 10

times higher, IP solvers are not able to provide good solutions. Using an integer model

and “atmost” global constraints to partition golfers, Comet CBLS obtains compara-

ble solutions with longer running times, but it is not able to find admissible solutions

for real-life instances. As previously, LocalSolver does not achieve the records for the

hardest instances, but is close to.

5.3 Steel mill slab design

The steel mill slab design problem (Hnich et al 2009) is a variant of the celebrated

cutting-stock problem, where orders of different sizes have to be packed onto slabs of

different capacities such that the total slab capacity is minimized. In addition, two

orders having the same color cannot be packed together into the a same slab (mutual

exclusion constraints). The model is based on the assignment of orders to slabs, and

the size of each slab is determined by its contents (Schaus et al 2011). The classical

instance of CSPLib with 111 orders (Hnich et al 2009) is solved to optimality (cost

equal to 0) in less than 1 second by LocalSolver, which outperforms most of the pre-

vious approaches (see Van Hentenryck and Michel (2008) for a state of the art). The

LSP treated by LocalSolver in this case contains 40 739 variables with 12 321 booleans;

LocalSolver visits nearly 100 000 solutions per second. Sample results obtained on new

instances proposed by Schaus2 are given on Table 5. The 200 instances numbered from

11-0 to 20-19 are not mentioned, because all are solved to optimality in less than one

second. State-of-the-art results are obtained by Heinz2, cleverly using a Dantzig-Wolfe

decomposition of the problem which can be directly tackled by an IP solver due to

the reasonable number of columns (heavily filtered thanks to the numerous mutual

2 http://becool.info.ucl.ac.be/steelmillslab



14

Table 5 Sample results for the steel mill slab design problem (minimization).

time limit: 60 s 2-0 3-0 4-0 5-0 6-0 7-0 8-0 9-0 10-0
LocalSolver 1.1 37 8 35 1 4 1 0 0 0
CPLEX 12.2 136 288 x 126 x 232 226 163 133
CPO 2.3 90 65 58 50 54 46 28 29 20
Comet CBLS 2.1 136 135 69 65 42 30 26 21 20

time limit: 600 s 2-0 3-0 4-0 5-0 6-0 7-0 8-0 9-0 10-0
LocalSolver 1.1 31 7 34 0 4 0 0 0 0
CPLEX 12.2 94 65 x 63 x 189 226 97 64
CPO 2.3 62 38 40 42 36 36 21 23 18
Comet CBLS 2.1 124 110 43 58 33 33 17 17 15

State of the art 22 5 32 0 0 0 0 0 0

Table 6 Sample results for the Spot 5 daily photographs scheduling problem (maximization).

time limit: 60 s 54 414 509 1401 1403
State of the art 70 22 120 19 125 176 056 176 140
LocalSolver 1.1 70 20 112 19 116 167 068 167 156
CPLEX 12.2 70 22 119 19 125 176 056 176 138

time limit: 60 s 1405 1407 1502 1504 1506
State of the art 176 179 176 245 61 158 124 243 168 247
LocalSolver 1.1 165 185 164 253 61 158 124 241 152 262
CPLEX 12.2 174 181 176 237 61 158 124 243 168 246

exclusion constraints). Note that this approach is dedicated to CSPLib instances: re-

laxing mutual exclusion constraints makes the number of columns greater, imposing

a branch-and-price approach. LocalSolver keeps reasonably close to optimal solutions,

whereas CPLEX and generic CBLS are clearly outperformed. Similarly, the best CP

approaches are not competitive (Schaus et al 2011).

5.4 Spot 5 photographs scheduling

The spot 5 daily photograph scheduling problem (Vasquez and Hao 2001) consists in

selecting the subset of photos to be shot by the Spot 5 satellite; the goal is to maximize

a profit function subject to knapsack constraints and mutual exclusion constraints.

This linear 0-1 model reads the same in CPLEX and LocalSolver. The larger instances

addressed in the literature (multi-orbit case) contains at most one thousand photos

in input, which makes them efficiently tractable by IP solvers today. Sample results

are presented on Table 6. The state of the art corresponds to Vasquez-Hao’s tabu

heuristic (Vasquez and Hao 2001); moreover, these authors have proven that their

results are nearly optimal (gap lower than 1%). The main lesson of this experiment

is that LocalSolver remains competitive with IP solvers when the scale of instances,

smaller, becomes favorable to tree-search techniques.

5.5 Minimum formwork stock

The minimum formwork stock problem (Benoist et al 2009b), encountered at Bouygues

Construction, aims at minimizing the shuttering material used on a construction site.

Once decomposed, the master problem can be viewed as a covering problem, whose



15

Table 7 Sample results on the minimum formwork stock (minimization).

time limit: 60 s site1 site8b site12b site13b
LocalSolver 1.1 5 640 326 5 640 398 9 223 040 7 729 336
CPLEX 12.2 5 409 158 5 409 240 8 392 196 7 408 436

scale makes it efficiently tractable by IP solvers. Sample results are presented on Ta-

ble 7. As for the previous problem, one can observe that LocalSolver remains compet-

itive in the face of CPLEX.

5.6 Eternity II puzzle

The Eternity II problem (Benoist and Bourreau 2008; Schaus and Deville 2008) is a

very challenging (and recreative) edge-matching puzzle edited by the Tomy company in

2007. The puzzle consists in filling a 16×16 square board with 256 square tiles, the four

sides of each tile being colored. The goal is to find an assignment of tiles to the board

such that the sides of every adjacent pair of tiles have the same color. Such a problem

can be modeled as an optimization problem: assign all tiles to the board while mini-

mizing the number of pairs of tiles violating the color constraints. To our knowledge,

the best solution found so far has 13 violations (over 480). Schaus and Deville (2008)

report a solution with 22 violations, computed by large neighborhood tabu search with

1 day of running time. Interestingly, they obtain solutions with nearly 70 violations

by using only swaps of tiles with tabu search. Decisions variables for each tile are its

rotation and position on the board (expressed through boolean variables in CPLEX

and LocalSolver) and mismatching edges are simply computing with the mathematical

operators available in each solver. We obtain a solution with 70 violations with 1 day

of running time by using LocalSolver 1.1. In this case, LocalSolver performs nearly

one million moves per minute while the LS program contains 262 144 binary decision

variables. Note that CPLEX does not provide any solution after 1 day of running time,

whereas the generic CBLS of Comet obtains a solution with 107 violations. Pure CP

approaches are not able to fall under the barrier of 80 violations (Schaus and Deville

2008).

6 Conclusion

The above results demonstrate that “Local Search Programming” is possible: an effec-

tive model-and-run paradigm for local search can be obtained by combining a simple

modeling grammar and an efficient incremental solver based on autonomous structured

moves. Hence, the next version of LocalSolver is envisaged following several research

directions. First, the LSP formalism is far from being achieved: our main preoccupation

is to add set operators without losing simplicity and genericity. This step is crucial for

tackling complex scheduling and routing problems. Then, the concept of autonomous

moves maintaining feasibility, which is a key of our approach, has to be reinforced

and developed yet. Finally, we have planed to add other metaheuristics (Aarts and

Lenstra 1997) to the top layer of the solver, in addition to the standard descent and

the simulated annealing.



16

Acknowledgements We warmly thank all people who have contributed, directly or indi-
rectly, to the LocalSolver project. Particularly: Antoine Jeanjean (Bouygues e-lab), Lucile

Robin (École Centrale de Lyon), Guillaume Rochart (Bouygues e-lab), Michel Van Caneghem
(LIF, Université Aix-Marseille II), Sofia Zaourar (ENSIMAG, Grenoble INP).

References

Aarts E, Lenstra J (1997) Local search in combinatorial optimization. In: Aarts E, Lenstra J
(eds) Local Search in Combinatorial Optimization, Wiley-Interscience Series in Discrete
Mathematics and Optimization, John Wiley & Sons, Chichester, England, UK

Benoist T, Bourreau E (2008) Fast global filtering for Eternity II. Constraint Programming
Letters 3:35–50

Benoist T, Estellon B, Gardi F, Jeanjean A (2009a) High-performance local search for solving
inventory routing problems. In: Stützle T, Birattari M, Hoos H (eds) Proceedings of SLS
2009, the 2nd International Workshop on Engineering Stochastic Local Search Algorithms,
Springer, Lecture Notes in Computer Science, vol 5752, pp 105–109

Benoist T, Jeanjean A, Molin P (2009b) Minimum formwork stock problem on residential
buildings construction sites. 4OR-Q J Oper Res 7:275–288

Cahon S, Melab N, Talbi EG (2004) ParadisEO: a framework for the reusable design of parallel
and distributed metaheuristics. Journal of Heuristics 10(3):357–380

Caseau Y, Laburthe F, Silverstein G (1999) A meta-heuristic factory for vehicle routing prob-
lems. In: Proceedings of CP 1999, Springer, Lecture Notes in Computer Science, vol 1713,
pp 144–158

Comet Tutorial (2010) Comet 2.1 Tutorial. Dynadec Decision Technologies Inc., Providence,
RI, 581 pages, http://www.dynadec.com

Deville Y, Schaus P (2010) Personnal communication
Di Gaspero L, Schaerf A (2003) EasyLocal++: an object-oriented framework for flexible design

of local search algorithms. Software - Practice & Experience 33(8):733–765
Dotú I, Van Hentenryck P (1999) Scheduling social golfers locally. In: Proceedings of CPAIOR

2005, Springer, Lecture Notes in Computer Science, vol 3524, pp 155–167
Estellon B, Gardi F, Nouioua K (2006) Large neighborhood improvements for solving car

sequencing problems. RAIRO Operations Research 40(4):355–379
Estellon B, Gardi F, Nouioua K (2008) Two local search approaches for solving real-life car

sequencing problems. European Journal of Operational Research 191(3):928–944
Estellon B, Gardi F, Nouioua K (2009) High-performance local search for task scheduling

with human resource allocation. In: Proceedings of SLS 2009, Springer, Lecture Notes in
Computer Science, vol 5752, pp 1–15

Fernandez Pons D (2010) Personnal communication
Hnich B, Miguel I, Gent I, Walsh T (2009) CSPLib: a problem library for constraints.

http://www.csplib.org
Michel L, Van Hentenryck P (2000) Localizer. Constraints 5(1/2):43–84
Perron L, Shaw P (2004) Combining forces to solve the car sequencing problem. In: Proceedings

of CPAIOR 2004, Springer, Lecture Notes in Computer Science, vol 3011, pp 225–239
Perron L, Shaw P, Furnon V (2004) Propagation guided large neighborhood search. In: Pro-

ceedings of CP 2004, Springer, Lecture Notes in Computer Science, vol 3258, pp 468–481
Prandtstetter M, Raidl G (2008) An integer linear programming approach and a hybrid variable

neighborhood search for the car sequencing problem. European Journal of Operational
Research 191(3):1004–1022

Rego C, Glover F (2002) Local search and metaheuristics. In: Gutin G, Punnen A (eds) The
Traveling Salesman Problem and Its Variations, Kluwer Academic Publishers, Dordrecht,
Netherlands, pp 105–109

Schaus P, Deville Y (2008) Hybridation de la programmation par contraintes et d’un voisinage
à très grande taille pour Eternity II. In: Proceedings of JFPC 2008, pp 115–122

Schaus P, Hentenryck PV, Monette JN, Coffrin C, Michel L, Deville Y (2011) Solving steel mill
slab problems with constraint-based techniques: CP, LNS, CBLS, to appear in Constraints

Selman B, Kautz H, Cohen B (1996) Local search strategies for satisfiability testing. In: John-
son D, Trick M (eds) Cliques, Coloring, and Satisfiability: 2nd DIMACS Implementation
Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol 26, AMS, Providence, RI



17

Van Hentenryck P, Michel L (2005) Constraint-Based Local Search. The MIT Press, Boston,
MA

Van Hentenryck P, Michel L (2007) Synthesis of constraint-based local search algorithms from
high-level models. In: Proceedings of AAAI 2007, pp 273–279

Van Hentenryck P, Michel L (2008) The steel mill slab design problem revisited. In: Proceedings
of CPAIOR 2008, Lecture Notes in Computer Science, vol 5015, pp 377–381

Vasquez M, Hao JK (2001) A “logic-constrained” knapsack formulation and a tabu algorithm
for the daily photograph scheduling of an earth observation satellite. Computational Op-
timization and Applications 20(2):137–157

Voudouris C, Dorne R, Lesaint D, Liret A (2001) iOpt: a software toolkit for heuristic search
methods. In: Proceedings of CP 2001, Lecture Notes in Computer Science, vol 2239, pp
716–730

Walser J, Iyer R, Venkatasubramanyan N (1998) An integer local search method with appli-
cation to capacitated production planning. In: Proceedings of AAAI 1998, pp 373–379


