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Abstract9

A word automaton recognizing a language L is good for games (GFG) if its composition with any10

game whose winning condition is L preserves the game’s winner. Deterministic automata are GFG,11

while nondeterministic automata are generally not. There are various other properties that are12

used in the literature for defining that a nondeterministic automaton is GFG, including “history13

deterministic”, “compliant with some letter game”, “good for trees”, and “good for composition14

with other automata”. Yet, it is not formally shown that all of these properties are equivalent.15

We clarify the different definitions of GFG automata and prove that they are all indeed equivalent.16

In the setting of alternating automata, so far only some of the above definitions have been considered.17

We generalize the other definitions and prove that they all remain equivalent.18

We further look into alternating GFG automata, showing that they are as expressive as determ-19

inistic automata with the same acceptance conditions and indices. Considering their succinctness,20

we show that alternating GFG automata over finite words, as well as weak automata over infinite21

words, are not more succinct than deterministic automata, and that determinizing Büchi and22

co-Büchi alternating GFG automata involves a 2Θ(n) state blow-up. We leave open the question of23

whether alternating GFG automata of stronger acceptance conditions allow for doubly-exponential24

succinctness compared to deterministic automata.25
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1 Introduction33

Deterministic automata are more usable than nondeterministic automata in contexts such34

as synthesis because of their compositional properties. Unfortunately, determinization is35

complicated and involves an exponential increase in the state space. Nondeterministic36

automata that are good for games (GFG) have been heralded as a potential way to combine37

the compositionality of deterministic automata with the conciseness of nondeterministic ones.38

In this article we are interested in the question of whether the benefits of good-for-games39

automata extend to alternating automata.40

The first hurdle of studying good-for-games alternating automata is to settle on definitions.41

Indeed, for nondeterminism this notion seems to be particularly natural, as it has been42

invented several times independently under different names: good for games [?], good for43

trees [?], and history determinism [?].44

While Henzinger and Piterman introduced the idea of automata that compose well with45

games, in their technical development they preferred to use a letter game such that one player46

having a winning strategy in this game implies that the nondeterministic automaton composes47
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2 Good for Games Automata

well with games [?]. In a similar vein, Kupferman, Safra and Vardi considered already in48

1996 a form of nondeterministic automata that resolves its nondeterminism according to49

the past by looking at tree automata for derived word languages [?]; this notion of good50

for trees was shown to be equivalent to the letter game [?]. Independently, Colcombet51

introduced history-determinism in the setting of nondeterministic cost automata [?], and52

later extended it to alternating automata [?]. He showed that history-determinism implies53

that the automaton is suitable for composition with other alternating automata, a seemingly54

stronger property than just compositionality with games. Although Colcombet further55

developed history-determinism for cost automata, here we only consider automata with56

ω-regular acceptance conditions.57

As a result, in the literature there are at least five different definitions that characterize,58

imply, or are implied by a nondeterministic automaton composing well with games: com-59

position with games, composition with automata, composition with trees, letter games and60

history determinism. While some implications between them are proved, others are folklore,61

or missing. Furthermore, these definitions do not all generalize in the same way to alternating62

automata: compositionality with games and with automata are agnostic to whether the63

automaton is nondeterministic, universal or alternating, and hence generalize effortlessly64

to alternating automata; the letter-game and good-for-tree automata on the other hand65

generalize ‘naturally’ in a way that treats nondeterminism and universality asymmetrically66

and hence need be adapted to handle alternation.67

In the first part of this article, we give a coherent account of good-for-gameness for68

alternating automata: we generalize all the existing definitions from nondeterministic to69

alternating automata, and show them be equivalent. This implies that these are also70

equivalent for nondeterministic automata. While some of these equivalences were already71

folklore, at least for nondeterministic automata, others are more surprising: compositionality72

with one-player games implies compositionality with two-player games and compositionality73

with automata, despite games being a special case of alternating automata and single-player74

games being a special case of games. We also show that in the nondeterministic case each75

definition can be relaxed to an asymmetric requirement: composition with universal automata76

and composition with universal trees are already equivalent to composition with alternating77

automata and games.78

In the second part of this article, we focus on questions of expressiveness and succinctness.79

The first examples of GFG automata were built on top of deterministic automata [?],80

and Colcombet conjectured that history-deterministic alternating automata with ω-regular81

acceptance conditions are not more concise than deterministic ones [?]. Yet, this has82

since been shown to be false: already GFG nondeterministic Büchi automata cannot be83

pruned into deterministic ones [?] and co-Büchi automata can be exponentially more concise84

than deterministic ones [?]. In general, nondeterministic GFG automata are in between85

nondeterministic and deterministic automata, having some properties from each [?].86

Alternating automata can be doubly exponentially more concise than deterministic87

automata; whether this is the case for GFG alternating automata is particularly interesting88

in the wake of quasi-polynomial algorithms for parity games. Indeed, since 2017 when89

Calude et al. brought down the upper bound for solving parity games from subexponential90

to quasi-polynomial [?], the automata-theoretical aspects of solving parity games with91

quasi-polynomial complexity have been studied in more depth [?, ?, ?, ?, ?, ?, ?].92

Bojańczyk and Czerwiński [?], and Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, and93

Parys [?] describe the quasi-polynomial algorithms for solving parity games explicitly in94

terms of deterministic word automata that separate some word languages. A polynomial95

deterministic or GFG safety separating automaton for these languages would imply a96

polynomial algorithm for parity games. However, it is shown in [?] that the smallest possible97

such nondeterministic automaton is quasi-polynomial. Since this lower bound only applies98
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for nondeterministic automata, it is interesting to understand whether alternating GFG99

automata could be more concise.100

Expressiveness wise, we show that alternating GFG automata are as expressive as101

deterministic automata with the same acceptance conditions and indices. The proof extends102

the technique used in the nondeterministic setting, producing a deterministic automaton from103

the product of the automaton and the two transducers that model its history determinism.104

Regarding succinctness, we first show that GFG automata over finite words, as well as105

weak automata over infinite words, are not more succinct than deterministic automata. The106

proof builds on the property that minimal deterministic automata of these types have exactly107

one state for each Myhill-Nerode equivalence class, and an analysis that GFG automata of108

these types must also have at least one state for each such class.109

We proceed to show that determinizing Büchi and co-Büchi alternating GFG automata110

involves a 2θ(n) state blow-up. The proof in this case is more involved, going through two main111

lemmas. The first shows that for alternating GFG Büchi automata, a history-deterministic112

strategy need not remember the entire history of the transition conditions, and can do with113

only remembering the prefix of the word read. The second lemma shows that the breakpoint114

(Miyano-Hayashi) construction, which is used to translate an alternating Büchi automaton115

into a nondeterministic one, preserves GFGness. We leave open the question of whether116

alternating GFG automata of stronger acceptance conditions allow for doubly-exponential117

succinctness compared to deterministic automata.118

Due to lack of space, some of the proofs appear in the Appendix.119

2 Preliminaries120

Words and automata. An alphabet Σ is a finite nonempty set of letters, a finite (resp.121

infinite) word u = u0 . . . uk ∈ Σ∗ (resp. w = w0w1 . . . ∈ Σω) is a finite (resp. infinite) sequence122

of letters from Σ. A language is a set of words, and the empty word is written ε.123

An alternating word automaton is A = (Σ, Q, ι, δ, α), where Σ is a finite nonempty124

alphabet, Q is a finite nonempty set of states, ι ∈ Q is an initial state, δ : Q× Σ→ B+(Q)125

is a transition function and α is an acceptance condition, on which we elaborate below.126

A transition condition is a formula b ∈ B+(Q) in the image of δ. For a state q ∈ Q, we127

denote by Aq the automaton that is derived from A by setting its initial state to q. A128

is nondeterministic (resp. universal) if all its transition conditions are disjunctions (resp.129

conjuctions), and it is deterministic if all its transition conditions are states.130

There are various acceptance conditions, defined with respect to the set of states that (a131

path of) a run of A visits. Some of the acceptance conditions are defined on top of a labeling132

of A’s states. In particular, the parity condition is a labeling α : Q→ Γ, where Γ is a finite133

set of priorities and a path is accepting if and only if the highest priority seen infinitely often134

on it is even. A Büchi condition is the special case of the parity condition where Γ = {1, 2};135

states of priority 2 are called accepting and of priority 1 rejecting, and then α can be viewed136

as the subset of accepting states of Q. Co-Büchi automata are dual, with Γ = {0, 1}. A weak137

automaton is a Büchi automaton in which every strongly connected component consists of138

only accepting or only rejecting states.139

In Sections 2-5, we handle automata with arbitrary acceptance conditions, and thus140

consider α to be a mapping from Q to a finite set Γ, on top of which some further acceptance141

criterion is implicitly considered (as in the parity condition). In Section 6, we focus on weak,142

Büchi, and co-Büchi automata, and then view α as a subset of Q.143

Games. A finite Σ-arena is a finite Σ×{A,E}-labeled Kripke structure. An infinite Σ-arena144

is an infinite Σ× {A,E}-labeled tree. Nodes with an A-label are said to belong to Adam;145

those with an E-label are said to belong to Eve. We represent a Σ-arena as R = (V,X, VE , L),146
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Boxes are Adam’s vertices.

The synchronized-product game G ×A:

Diamonds are Eve’s vertices.

Solid vertices: choosing the next vertex of G.

Dashed vertices: choosing the next state of A.

An {a, b}-labeled game G:An alternating automaton A over {a, b}:
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Figure 1 An example of a product between an alternating automaton and a finite-arena game.

where V is its set of nodes, X its transitions, VE the E-labeled nodes, V \ VE the A-labeled147

nodes and L : V → Σ its Σ-labeling function. We will assume that all states have a successor.148

A play in a R is an infinite path in R. A game is a Σ-arena together with a winning149

condition W ⊆ Σω. A play π is said to be winning for Eve in the game if the Σ-labels along150

π form a word in W . Else π is winning for Adam.151

A strategy for Eve (Adam, resp.) is a function τ : V ∗ → V that maps a history v0 . . . vi,152

i.e. a finite prefix of a play in R, to a successor of vi whenever vi ∈ VE (vi /∈ VE). A play153

v0, v1, . . . agrees with a strategy τ for Eve (Adam) if whenever vi ∈ VE (vi /∈ VE), we have154

vi+1 = τ(vi). A strategy for Eve (Adam) is winning if all plays that agree with it are winning155

for Eve (Adam). We say that a player wins the game if they have a winning strategy.156

All the games we consider have ω-regular winning conditions and are therefore determined157

and the winner has a finite-memory strategy [?]. Finite-memory strategies can be modeled by158

transducers. Given alphabets I and O, an (I/O)-transducer is a tupleM = (I,O,M, ι, ρ, χ),159

where M is a finite set of states (memories), ι ∈ M is an initial memory, ρ : M × I → M160

is a deterministic transition function, and χ : M → O is an output function. The strategy161

M : I∗ → O is obtained by following ρ and χ in the expected way: we first extend ρ to162

words in I∗ by setting ρ(ε) = ι and ρ(u · a) = ρ(ρ(u), a), and then defineM(u) = χ(ρ(u)).163

Products.164

I Definition 1 (Synchronized product). The synchronized product R×A between a Σ-arena165

R = (V,X, VE , L) and an alternating automaton A = (Q,Σ, ι, δ, α) with mapping α : Q→ Γ166

is a Γ∪{⊥}-arena of which the states are V ×B+(Q) and the successor relation is defined by:167

(v, q), for a state q of Q, has successors (v′, δ(q, L(v′))) for each successor v′ of v in R.168

(v, b ∧ b′) and (v, b ∨ b′) have two successors (v, b) and (v, b′);169

If R is rooted at v then the root of R×A is (v, δ(ι, L(v))).170

The positions belonging to Eve are (v, b) where either b is a disjunction, or b is a state in171

Q and v ∈ VE. The label of (v, b) is α(b) if b is a state of Q, and ⊥ otherwise.172

An example, without labeling, of a synchronized product is given in Figure 1.173
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I Definition 2 (Automata composition). Given alternating automata B = (Σ, QB, ιB, δB, β :174

QB → Γ) and A = (Γ, QA, ιA, δA, α), their composition B ×A consists of the synchronized175

product automaton (Σ, QB ×QA, (ιB, ιA), δ, α′), where α′(qB , qA) = α(qA) and δ((qB, qA), a)176

consists of f(δB(qB , a), qA) where:177

f(c ∨ c′, q) = f(c, q) ∨ f(c′, q)178

f(c ∧ c′, q) = f(c, q) ∧ f(c′, q)179

f(q′, q) = g(q′, δA(q, β(q′)) where180

g(q, c ∨ c′) = g(q, c) ∨ g(q, c′)181

g(q, c ∧ c′) = g(q, c) ∧ g(q, c′)182

g(q, q′) = (q, q′).183

Note that this stands for first unfolding the transition condition in B and then the184

transition condition in A, and it is equivalent to the following substitution, which matches185

Colcombet’s notation [?]: δB(qB, a)[q ∈ QB ← δA(qA, β(q))[p ∈ QA ← (q, p)]]186

Acceptance of a word by an automaton. We define the acceptance directly in terms of187

the model-checking (membership) game, which happens to be exactly the product of the188

automaton with a path-like arena describing the input word. More precisely, A accepts a189

word w if and only if Eve wins the model-checking game G(w,A), defined as the product190

Rw ×A, where the arena Rw consists of an infinite path, of which all positions belong to191

Eve (although it does not matter), and the label of the ith position is the ith letter of w.192

We will refer to the positions of Rw by the suffix of w that labels the path starting there.193

We denote by Gτ (w,A) the model-checking game that agrees with a strategy τ of Adam or194

Eve. The language of an automaton A, denoted by L(A), is the set of words that it accepts195

(recognizes). Two automata are equivalent if they recognize the same language.196

3 Good for Games Automata: Five Definitions197

We clarify the five definitions that are used in the literature for stating that an automaton198

is good for games, while generalizing them form a nondeterministic to an alternating word199

automaton A = (Σ, Q, ι, δ, α).200

Good for game composition. The first definition matches the intuition that “A is good201

for playing games”. It was given in [?] for nondeterministic automata and applies as is202

to alternating automata, by properly defining the synchronized product of a game and an203

alternating automaton. (See Definition 1 and Figure 1.) We shall prove in Section 4 that204

Definition 3 is equivalent when speaking of only one-player finite-arena games and two-player205

finite/infinite-arena games.206

I Definition 3 (GFG1: Good for game composition). A is good for game composition207

if for every [one-player] game G with a [finite] Σ-labeled arena and a winning condition208

L(A), Eve has a winning strategy in G if and only if she has a winning strategy in the209

synchronized-product game G×A.210

Compliant with the letter games. The first definition is simple to declare, but is not211

convenient for technical developments. Thus, Henzinger and Piterman defined the “letter-212

game”, our next definition, while independently Colcombet defined history-determinism,213

which we provide afterwards. The two latter definitions are easily seen to be equivalent and214

they were shown in [?] to imply the game-composition definition. We are not aware of a full215

proof of the other direction in the literature; we include one in this article.216

In the letter-game for nondeterministic automata [?], Adam generates a word letter by217

letter, and Eve resolves the nondeterminism “on the fly”, such that the generated run of218

A accepts every word in the language. It has not been generalized yet to the alternating219
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setting, and there are various ways in which it can be generalized, as it is not clear who220

should pick the letters and how to resolve the nondeterminism and universality. It turns out221

that a generalization that works well is to consider two independent games, one in which222

Eve resolves the nondeterminism while Adam picks the letters and resolves the universality,223

and another in which Eve picks the letters.224

I Definition 4 (GFG2: Compliant with the letter games). There are two letter games, Eve’s225

game and Adam’s game.226

Eve’s game: A configuration is a transition condition b ∈ B+(Q) and a letter σ ∈ Σ∗ ∪ ε.227

(We abuse ε to also be an empty letter.) A play begins in (b0, σ0) = (ι, ε) and consists of an228

infinite sequence of configurations (b0, σ0)(b1, σ1) . . .. In a configuration (bi, σi), the game229

proceeds to the next configuration (bi+1, σi+1) as follows.230

If bi is a state of Q, Adam picks a letter a from Σ, having (bi+1, σi+1) = (δ(bi, a), a).231

If bi is a conjunction bi = b′ ∧ b′′, Adam chooses between (b′, ε) and (b′, ε).232

If bi is a disjunction bi = b′ ∨ b′′, Eve chooses between (b′, ε) and (b′, ε).233

In the limit, a play consists of an infinite sequence π = b0, b1, . . . of transition conditions and234

an infinite word w = σ0, σ1, . . .. Let ρ be the restriction of π to transition conditions that are235

states of Q. Eve wins the play if either w /∈ L(A) or ρ satisfies A’s acceptance condition.236

The nondeterminism in A is compliant with the letter games if Eve wins this game.237

Adam’s game: It is similar to Eve’s game, except that Eve chooses the letters instead of238

Adam, and Adam wins if either w ∈ L(A) or ρ does not satisfy A’s acceptance condition.239

The universality in A is compliant with the letter games if Adam wins this game.240

A is compliant with the letter games if its nondeterminism and universality are compliant241

with the letter games.242

History determinism. A nondeterministic automaton is history deterministic [?] if there is a243

strategy to resolve the nondeterminism that only depends on the word read so far, i.e., that is244

uniform for all possible futures. Colcombet generalized the definition to alternating automata245

[?], considering a strategy to be a function from a finite sequence of transition conditions246

and letters to a transition condition, and considering its adequacy in the model-checking247

game of A and a word w.248

We first define how to use a strategy τ : (Σ × B+(Q))∗ → B+(Q) for playing in a249

model-checking game G(w,A), as the history domains are different. Recall that in the250

model-checking game G(w,A), positions consist of a transition of A and a suffix of w, so251

histories have type (Σω × B+(Q))∗. From such a history h, let h′ be the history obtained by252

only keeping the first letter of the Σω component of h’s elements, that is, the letter at the253

head of the current suffix. Then, we extend τ to operate over the (Σω ×B+(Q))∗ domain, by254

defining τ(h) = τ(h′).255

For conveniency, we often refer to a history in (Σ× B+(Q))∗, as a pair in Σ∗ × B+(Q)∗.256

I Definition 5 (GFG3: History determinism [?]).257

The nondeterminism inA is history-deterministic if there is a strategy τE : (Σ×B+(Q))∗ →258

B+(Q) such that for all w ∈ L(A), τE is a winning strategy for Eve in G(w,A).259

The universality in A is history-deterministic if there is a strategy τA : (Σ× B+(Q))∗ →260

B+(Q) such that for all w /∈ L(A), τA is a winning strategy for Adam in G(w,A).261

A is history-deterministic if its nondeterminism and universality are history deterministic.262

Good for automata composition. The next definition comes from Colcombet’s proof263

that alternating history-deterministic automata behave well with respect to composition264

with other alternating automata. We shall show in Section 4 that it also implies proper265

compositionality with tree automata, and that for nondeterministic automata, it is enough266

to require compositionality with universal, rather than alternating, automata.267
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I Definition 6 (GFG4: Good for automata composition [?]). A is good for automata compos-268

ition if for every alternating word (or tree) automaton B with Σ-labeled states and acceptance269

condition L(A), the composed automaton B ×A is equal to B.270

Good for trees. The next definition comes from the work in [?, ?] on the power of non-271

determinism in tree automata. It states that a nondeterministic word automaton A is272

good-for-trees if we can “universally expand” it to run on trees and accept the “universally273

derived language” L(A)M—trees all of whose branches are in the word language of A.274

Observe that every universal word automaton for a language L is trivially good for LM.275

Therefore, for universal automata, we suggest that a dual definition is more interesting: its276

“existential expansion to trees” accepts LO—trees in which there exists a path in L.277

For an alternating automaton A, we generalize the good-for-trees notion to require that A278

is good for both L(A)M and L(A)O, when expanded universally and existentially, respectively.279

We first formally generalize the definition of “expansion to trees” to alternating automata.280

It follows the standard definition of a run of an alternating automaton on a word, while281

rather than considering in each step the next letter, it considers the label of a single child282

or all children of the current tree node: The universal (resp. existential) expansion of A to283

trees accepts a tree t iff Eve wins the game t×A, when t is viewed as a game in which all284

nodes belong to Adam (resp. Eve).285

I Definition 7 (GFG5: Good for trees). A is good for trees if its universal- and existential-286

expansions to trees recognize the tree languages L(A)M and L(A)O, respectively.287

4 Equivalence of All Definitions288

We prove in this section the equivalence of all of the definitions in the alternating setting,289

as given in Section 3, which implies their equivalence also in the nondeterministic (and290

universal) setting. We may therefore refer to an automaton as good-for-games (GFG) if it291

satisfies any of these definitions. In some cases, we provide additional equivalences that only292

apply to the nondeterministic setting.293

I Theorem 8. An alternating automaton either satisfies all of Definitions 3-7 or none of294

them.295

Proof.296

Lemma 9: History-determinism = compliance with the letter games. (Def. 4 = Def. 5).297

Lemma 13: Compliance with the letter games ⇒ compositionality with arbitrary games.298

(Def. 4 ⇒ “strong” Def. 3).299

Lemma 14: Compositionality, even with just one-player finite-arena games ⇒ compliance300

with the letter games. (“weak” Def. 3 ⇒ Def. 4).301

Lemma 15: Good for trees is = compositionality with one-player games.302

(Def. 7 = “medium” Def. 3).303

Lemma 16: Compositionality with games = compositionality with automata.304

(Def. 6 = Def. 3).305

J306

We start with the simple equivalence of history determinism and compliance with the307

letter game. (Observe that the letter-game strategies are of the same type as the strategies308

that witness history determinism: a function from (B+(Q)× Σ)∗ to B+(Q).)309

I Lemma 9. Consider an alternating automaton A = (Σ, Q, ι, δ, α).310

A strategy τE for Eve in her letter game is winning if and only if it witnesses the311

history-determinism of the nondeterminism in A.312
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A strategy τA for Adam in his letter game is winning if and only if it witnesses the313

history-determinism of the universality in A.314

An alternating automaton A is history-deterministic if and only if it is compliant with315

the letter games.316

I Corollary 10. If A is history-deterministic, then there are finite-memory strategies τE and317

τA to witness it.318

The following two propositions state that “standard manipulations” of alternating auto-319

mata preserve history determinism. The dual of an automaton A, denoted by A, is derived320

from A by changing every conjunction of a transition condition to a disjunction, and vice321

versa, and changing the acceptance condition to reject every sequence of states (labelings)322

that A accepts, and accept every sequence that A rejects.323

I Proposition 11. Consider an alternating automaton A and its dual A. The nondeterminism324

(resp. universality) of A is history deterministic iff the universality (resp. nondeterminism)325

of A is history deterministic.326

I Proposition 12. Consider an alternating automaton A, and let A′ be an automaton that327

is derived from A by changing some transition conditions to different, but equivalent, boolean328

formulas. Then the nondeterminism/universality in A = (Σ, Q, ι, δ, α) is history-deterministic329

iff it is history-deterministic in A′.330

The following lemma was shown in [?] for nondeterministic automata and can be deduced331

for alternating automata from Lemma 9 and Colcombet’s result [?] on the equivalence of332

history-determinism and being good for composition with automata. We provide here a333

direct simple proof.334

I Lemma 13. If an alternating automaton A is compliant with the letter games then it is335

good for game-composition.336

If A is good for infinite games, it is clearly good for finite games, which can be unfolded into337

infinite games. The following lemma shows that the other direction holds too: compositionality338

with finite games implies compliance with the letter games, and therefore, from the previous339

lemma, composition with infinite games.340

Note that this correspondence does not extend to the notion of good for small games341

[?, ?]: an automaton can be good for composition with games up to a bounded size, without342

being good for games.343

I Lemma 14. If an alternating automaton is good for composition with finite-arena one-344

player games then it is compliant with the letter games.345

Proof. Consider an alternating automaton A over the alphabet Σ. We show that if A is not346

compliant with the letter games then it is not good for finite-arena one-player games. By347

Proposition 12, we may assume that the transition conditions in A are in CNF.348

If A is not compliant with Eve’s letter game, then since this game is ω-regular, Adam349

has some finite-memory winning strategy, modeled by a transducerM. Observe that states350

of M output the next move of Adam, namely a letter and a disjunctive clause, and the351

transitions ofM correspond to moves of Eve.352

We translateM into a one-player Σ-labeled game with winning condition L(A), in which353

all states belong to Adam: we consider every state/transition ofM as a vertex/edge of G,354

take the letter output of a state as the labeling of the corresponding vertex, and ignore the355

other outputs and the transition labelings. (See an example in Figure 2.) We claim that A is356

not good for one-player finite-arena games, since i) Adam loses G; and ii) Adam wins G × A.357
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in Eve’s letter game on A from Figure 1:
A transducerM for Adam’s strategy

A game corresponding toM:

Transitions correspond to Eve’s choices.
States output Adam’s choices: A letter and a disjunctive clause.

All vertices belong to Adam.

v2

m0 v0

v3

v1

q1∨q2

q1∨q2

m1

m2

m3

q3

q1

a

a

b

q2 a

a

b

a

a

q3

q1

q1

q2

q1

Figure 2 An example of a strategy for Adam in Eve’s letter game, and the corresponding game,
as used in the proof of Lemma 14.

Indeed, considering claim (i), a play of G corresponds to a possible path inM, which358

corresponds to a possible play in Eve’s letter game that agrees withM. If there is a play of359

G whose labelings are not in L(A), it follows that Eve can win her letter game againstM, by360

forcing a word not in L(A), which contradicts the assumption thatM is a winning strategy.361

As for claim (ii), Adam can play in the G × A game according to M: whenever in a362

vertex (v, b) of G × A, where v is a vertex of G and b a transition condition of A, Adam363

chooses the next vertex according to the transition in the corresponding state inM. Thus,364

the generated play in G ×A corresponds to a play in Eve’s letter game that agrees withM,365

which Adam is guaranteed to win.366

In the case that A is not compliant with Adam’s letter game, we do the dual: Consider367

the transition conditions in A to be in DNF, have a winning strategy for Eve, modeled by a368

transducerM whose states output a letter and a conjunctive clause and whose transitions369

correspond to Adam’s choices, and translate it to a Σ-labeled one-player game G, in which370

all vertices belong to Eve. Then, for analogous reasons, Eve loses G, but wins G ×A. J371

The equivalence between the ‘good for trees’ notion and being good for composition372

with one-player games, follows directly from the generalized definition of ‘good for trees’373

(Definition 7) and the following observation: Every one-player Σ-labeled game is built on374

top of a Σ-labeled tree (its arena, in case it is infinite, or the expansion of all possible plays,375

in case of a finite arena), and every Σ-labeled tree can be viewed as a one-player game by376

assigning ownership of all positions to either Adam or Eve. Clearly, every Σ-labeled tree t377

belongs to L(A)M iff Eve wins the game on t in which all nodes belong to Adam.378

I Lemma 15. An alternating automaton A is good for trees iff it is good for composition379

with one-player games.380

A finite-arena game can be viewed as an alternating automaton over a singleton alphabet,381

suggesting that being good for composition with alternating automata implies being good382

for composition with finite games. This is indeed the case and by Lemmas 13 and 14, it also383

implies being good for infinite games. It turns out that even though alternating automata384

over a non-singleton alphabet cannot be just viewed as games, the other direction also holds.385

I Lemma 16. An alternating automaton A is good for game-composition if and only if it is386

good for automata-composition.387

Proof. We start with showing that being good for automata-composition implies being good388

for game-composition. Given a game over a finite Σ-arena R = (V,X, VE , L) with initial389

position ι and winning condition W ⊆ Σω, consider the automaton AR = (V, {a}, ι, δ, L) over390

the alphabet {a} with acceptance condition W , where δ(v, a) =
∨
{v′|(v, v′) ∈ X} if v ∈ VE391
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and δ(v, a) =
∧
{v′|(v, v′) ∈ X} otherwise. AR accepts the unique word in {a}ω if and only392

if Eve has a winning strategy in R from ι, because a strategy in R is exactly a run of AR393

over this unique word, and it is winning if and only if the run is accepting.394

Then, observing that the synchronized product R × A between a finite game and an395

automaton is the special case of the synchronized product AR ×A, we conclude that if an396

automaton is good for automata-composition, then Eve wins R×A if and only if AR ×A is397

non-empty, if and only if AR is non-empty, i.e. if and only if Eve has a winning strategy in398

R. That is, A is good for finite game-composition. From Lemmas 13 and 14, A is also good399

for composition with infinite games.400

401

For the other direction, assume that A is good for game composition. We show that A is402

also good for automata composition. Consider an alternating automaton B with acceptance403

condition L(A). Let w ∈ L(B) and consider the model-checking game G(w,B) in which404

Eve has a winning strategy. Since A is good for game composition, Eve also has a winning405

strategy s in G(w,B)×A. We use this strategy to build a strategy s′ for Eve in G(w,B×A).406

First recall from Def. 2, that the transitions of B ×A are of the form f(c, q) ∨ f(c′, q),407

f(c, q)∧f(c′, q), corresponding to choices in B, or of the form g(q, c)∨g(q, c′) or g(q, c)∧g(q, c′),408

corresponding to choices in A. At a position (w, f(c, q) ∨ f(c′, q)), Eve plays as s plays409

at ((w, c ∨ c′), q); at (w, g(q, c) ∨ g(q, c′)) Eve plays as s plays at ((w, c ∨ c′), q). Since the410

winning condition in both games is determined by the states of A visited infinitely often,411

if s is winning, so is s′. Therefore L(
∏
BA) accepts w and L(B) ⊆ L(B × A). In the case412

w /∈ L(B), Adam can similarly copy his strategy from G(w,B)×A into G(w,B ×A).413

We conclude that B×A is equal to B and thereforeA is good for automata composition. J414

I Remark 17. We observe that compositionality with word automata also implies composi-415

tionality with (symmetric, unranked) tree automata. A tree automaton is similar to a word416

automaton, except that its transitions have modalities �q and ♦q instead of states. Then, the417

model-checking (or membership) game of a tree and an automaton is a game, as for words,418

where, in addition, the modalities �q and ♦q dictate whether the choice of successor in the419

tree is given to Adam or Eve. Then, if A composes with games, it must in particular compose420

with the model-checking game of t and a tree automaton B with acceptance condition L(A).421

If Eve (Adam) wins the model-checking game G(t,B), she (he) also wins G(t,B)×A. Her422

(his) winning strategy in this game is also a winning strategy in G(t,B ×A), so B ×A must423

accept (reject) t. A therefore composes with tree-automata.424

While Theorem 8 obviously holds also for nondeterministic automata, we observe that425

in the absence of universality, the definitions of Section 3 can be relaxed into asymmetrical426

ones. For letter games, history determinism, and good-for-trees, it follows directly from the427

definitions, as only their ‘nondeterministic part’ applies. For composition with games and428

automata, we also show that it suffices to compose with universal automata and games.429

I Lemma 18. A nondeterministic automaton A is good for automata-composition if and430

only if it is good for composition with universal automata.431

5 Expressiveness432

For some acceptance conditions, such as weak, Büchi, and co-Büchi, alternating automata433

are more expressive than deterministic ones. For other conditions, such as parity, Rabin,434

Streett, and Muller, they are not. Yet, also for the latter conditions, once considering the435

condition’s index, which is roughly its size, alternating automata are more expressive than436

deterministic automata with the same acceptance condition and index. (More details on the437

different acceptance conditions can be found, for example, in [?].)438
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Most acceptance conditions are preserved, together with their index, when taking the439

product of an automaton A with an auxiliary memory M . In such a product, the states of440

the resulting automaton are pairs (q,m) of a state q from A and a state m from M , while441

the acceptance condition is defined according to the projection of the states to their A’s442

component. In particular, the weak, Büchi, co-Büchi, parity, Rabin, and Streett conditions443

are preserved, together with their index, under memory product, while the very-weak and444

Muller conditions are not.445

For showing that GFG automata are not more expressive than deterministic automata with446

the same acceptance condition and index, we generalize the proof of [?] from nondeterminism447

to alternation. The idea is to translate an alternating GFG automaton A to an equivalent448

deterministic automaton D by taking the product of A with the transducers that model the449

history deterministic strategies of A.450

I Theorem 19. Every alternating GFG automaton with acceptance condition that is pre-451

served under memory-product can be translated to a deterministic automaton with the same452

acceptance condition and index. In particular, this is the case for weak, co-Büchi, Büchi,453

parity, Rabin, and Streett GFG alternating automata of any index.454

Proof. Consider an alternating GFG automaton A = (Σ, Q, ι, δ, α). For conveniency, we455

may assume by Proposition 12 that A’s transition conditions are in DNF.456

By Corollary 10, the history-determinism of A’s universality and nondeterminism is wit-457

nessed by finite-memory strategies, modeled by transducers MA = (IA, OA,MA, ιA, ρA, χA)458

and ME = (IE , OE ,ME , ιE , ρE , χE), respectively. Observe that since transition conditions459

of A are in DNF, the strategyMA chooses a state of A for every letter in Σ and clause of460

states of A, while the transitions inME are made in pairs, first choosing a clause for a letter461

in Σ and then updating the memory again according to Adam’s choice of a state of A.462

Formally, we have that the elements of IA are pairs (a,C), where a ∈ Σ and C is a clause463

of states in Q, and that elements of OA are states in Q, while elements of IE are in Σ ∪Q464

and elements of OE are either clauses of states in Q or ε (when only updating the memory).465

Let D = (Σ, Q′, ι′, δ′, α′) be the deterministic automaton that is the product of A466

andMA, in which the universality is resolved according toMA and the nondeterminism467

according to ME . That is, Q′ = Q ×MA ×ME , ι′ = (ι, ιA, ιE), α′(q, x, y) = α(q), and468

for every q ∈ Q, x ∈ MA, y ∈ ME , and a ∈ Σ, we have δ′((q, x, y), a) = (q′, x′, y′), where469

x′ = ρA(x, (a, χE(ρE(y, a)))), q′ = χA(x′), and y′ = ρE(ρE(y, a), q′).470

Observe that A and D have the same acceptance condition and the same index, as A’s471

acceptance condition is preserved under memory-product. We also have that A and D are472

equivalent, since for every word w, the games G(w,A), GMA,ME
(w,A), and G(w,D) have473

the same winner. J474

6 Succinctness475

Nondeterministic GFG automata over finite words and weak GFG automata over infinite476

words can be pruned to equivalent deterministic automata [?, ?]. We show that this477

remains true in the alternating setting. The succinctness of nondeterministic GFG Büchi478

automata compared to deterministic ones is still an open question, having no lower bound479

and a quadratic upper bound, whereas nondeterministic GFG co-Büchi automata can be480

exponentially more succinct than their deterministic counterparts [?] . We show that in481

the alternating setting, both Büchi and co-Büchi GFG automata are singly-exponential482

more succinct than deterministic ones. We leave open the question of whether stronger483

acceptance conditions can allow GFG automata to be doubly-exponential more succinct than484

deterministic ones.485
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In this section we focus on specific classes of automata, and for brevity use three letter486

acronyms in {D, N, A} × {W, B, C} × {W} when referring to them. The first letter stands487

for the transition mode (deterministic, nondeterministic, alternating); the second for the488

acceptance-condition (weak, Büchi, co-Büchi); and the third indicates that the automaton489

runs on words. For example, DBW stands for a deterministic Büchi automaton on words.490

We also use DFA, NFA, and WFA when referring to automata over finite words.491

In the nondeterministic setting, the proof that GFG NFAs and GFG NWWs are not more492

succinct than DFAs and DWWs, respectively, is based on two properties: i) In a minimal DFA493

or DWW for a language L, there is exactly one state for every Myhill-Nerode equivalence class494

of L. (Recall that finite words u and v are in the same class C when for every word w, uw ∈ L495

iff vw ∈ L. For a class C, the language L(C) of C is {w | ∃u ∈ C such that uw ∈ L}.); and496

ii) In a nondeterministic GFG automaton A that has no redundant transitions, for every497

finite word u and states q, q′ ∈ δ(u), we have L(Aq) = L(Aq′).498

For showing that GFG AFAs and AWWs are not more succinct than DFAs and DWWs,499

respectively, we provide in the following lemma as a variant of the above second property.500

I Lemma 20. Consider a GFG alternating automaton A. Then for every class C of the501

Myhill-Nerode equivalence classes of L(A), there is a state q in A, such that L(Aq) = L(C).502

Proof. Let τ and η be history-deterministic strategies of A for Eve and Adam, respectively.503

For every finite word u, let C(u) be the Myhill-Nerode equivalence class of u, and q(u) be the504

state that A reaches when running on u along τ and η. We claim that L(Aq(u)) = L(C(u)).505

Indeed, if there is a word w ∈ L(C(u)) \ L(Aq(u)) then Adam wins the model-checking506

game Gτ (uw,A), by playing according to η until reaching q(u) over u and then playing507

unrestrictedly for rejecting the w suffix, contradicting the history determinism of τ .508

Analogously, if there is a word w ∈ L(Aq(u)) \L(C(u)) then Eve wins the model-checking509

game Gη(uw,A), by playing according to τ until reaching q(u) over u and then playing510

unrestrictedly for accepting the w suffix, contradicting the history determinism of η. J511

The insuccinctness of GFG AFAs and GFG AWWs directly follows.512

I Theorem 21. For every GFG AFA or GFG AWW A, there is an equivalent DFA or513

DWW A′, respectively, such that the number of states in A′ is not more than in A.514

As opposed to weak automata, minimal deterministic Büchi and co-Büchi automata do515

not have the Myhill-Nerode classification, and indeed, it was shown in [?] that GFG NCWs516

can be exponentially more succinct than DCWs.517

We show that GFG ACWs are also only singly-exponential more succinct than DCWs.518

We translate a GFG ACW A to an equivalent DCW D in four steps: i) Dualize A to a GFG519

ABW B; ii) Translate B to an equivalent NBW, having an O(3n) state blow-up [?, ?], and520

prove that the translation preserves GFGness; iii) Translate B to an equivalent DBW C,521

having an additional quadratic state blow-up [?]; and iv) Dualize C to a DCW D.522

The main difficulty is, of course, in the second step, showing that the translation of523

an ABW to an NBW preserves GFGness. For proving it, we first need the following key524

lemma, stating that in a GFG ABW in which the transition conditions are given in DNF,525

the history-deterministic strategies can only use the current state and the prefix of the word526

read so far, ignoring the history of the transition conditions.527

I Lemma 22. Consider an ABW A with transition conditions in DNF and history-deterministic528

nondeterminism. Then Eve has a strategy τ : Q × Σ∗ → B+(Q) (and not only a strategy529

(B+(Q)× Σ)∗ → B+(Q)), such that for every word w ∈ L(A), Eve wins Gτ (w,A).530

Proof. Let ξ : (B+(Q)×Σ)∗ → B+(Q) be a ‘standard’ history-deterministic strategy for Eve.531

Observe that since the transition conditions of A are in DNF, ξ’s domain is (Q× Σ)∗, and532
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the run of A on w following ξ, namely Gξ(w,A), is an infinite tree, in which every node is533

labeled with a state of A. A history h for ξ is thus a finite sequence of states and a finite534

word. Let yearn(h) denote the number of positions in the sequence of states in h from the535

last visit to α until the end of the sequence. We shall say “a history h for a word u” when536

h’s word component is u, and “h ends with q” when the sequence of states in h ends in q.537

We inductively construct from ξ a strategy τ : Q× Σ∗ → B+(Q), by choosing for every538

history (q, u) ∈ Q× Σ∗ some history h of ξ, as detailed below, and setting τ(q, u) = ξ(h).539

At start, for u = ε, we set τ(ι, ε) = ξ(ι, ε). In a step in which every history of ξ for u ends540

with a different state, we set τ(q, u) = ξ(h), where h is the single history that ends with q.541

The challenge is in a step in which several histories of ξ for u end with the same state,542

as τ can follow only one of them. We define that τ(q, u) = ξ(h), where h is a history of ξ543

for u that ends with q, and yearn(h) is maximal among the histories of ξ for u that ends544

in q. Every history of ξ that is not followed by τ is considered “stopped”, and in the next545

iterations of constructing τ , histories of ξ with stopped prefixes will not be considered.546

As ξ is a winning strategy for Eve, all paths in Gξ(w,A) are accepting. Observe that547

Gτ (w,A) is a tree in which some of the paths are from Gξ(w,A) and some are not—whenever548

a history is stopped in the construction of τ , a new path is created, where its prefix is of the549

stopped history and the continuation follows the path it was redirected to. We will show550

that, nevertheless, all paths in Gτ (w,A) are accepting.551

Assume toward contradiction a path ρ of Gτ (w,A) that is not accepting, and let k be552

its last position in α. The path ρ must have been created by infinitely often redirecting it553

to different histories of ξ, as otherwise there would have been a rejecting path of ξ. Now,554

whenever ρ was redirected, it was to a history h, such that yearn(h) was maximal. Thus, in555

particular, this history did not visit α since position k. Therefore, by König’s lemma, there556

is a path π of Gξ(w,A) that does not visit α after position k, contradicting the assumption557

that all paths of Gξ(w,A) are accepting. J558

We continue with showing that the translation of an ABW to an NBW preserves GFGness.559

I Lemma 23. Consider an ABW A for which the nondeterminism is history deterministic.560

Then the nondeterminism in the NBW A′ that is derived from A by the breakpoint (Miyano-561

Hayashi) is also history deterministic.562

Proof. Consider an alternating GFG automaton A = (Σ, Q, ι, δ, α). We write α for Q \ α.563

By Proposition 12, we may assume that the transition conditions of A are given in DNF.564

The breakpoint construction [?] generates from A an equivalent NBW A′, by intuitively565

keeping track of a pair 〈S,O〉 of sets of states of A, where S is the set of states that are566

visited at the current step of a run, and O are the states among them that “owe” a visit567

to α. A state owes a visit to α if there is a path leading to it with no visit to α since the568

last “breakpoint”, which is a state of A′ in which O = ∅. The accepting states of A′ are the569

breakpoints.570

For providing the formal definition of A′, we first construct from δ and each letter a ∈ Σ,571

a set ∆(a) of transition functions γ1, γ2, . . . γk, for some k ∈ N, such that each of them has572

only universality and corresponds to a possible resolution of the nondeterminism in every573

state of A. For example, if A has states q1, q2, and q3, and its transition function δ for the574

letter a is δ(q1, a) = q1 ∧ q3 ∨ q2; δ(q2, a) = q2 ∨ q3 ∨ q1; and δ(q3, a) = q2 ∧ q3 ∨ q1, then575

∆(a) is a set of twelve transition functions, where γ1(q1, a) = q1 ∧ q3; γ1(q2, a) = q2; and576

γ1(q3, a) = q2 ∧ q3, etc.., corresponding to the possible ways of resolving the nondeterminism577

in each of the states.578

For convenience, we shall often consider a conjunctive formula over states as a set of579

states, for example q1 ∧ q3 as {q1, q3}. For a set of states S ⊆ Q, a letter a, and a transition580

function γ ∈ ∆(a), we define γ(S) =
⋃
q∈S γ(q, a).581



14 Good for Games Automata

Formally, the breakpoint construction [?] generates from A an equivalent NBW A′ =582

(Σ, Q′, ι′, δ′, α′) as follows:583

Q′ = {〈S,O〉 | O ⊆ S ⊆ Q}584

ι′ = ({ι}, {ι} ∩ α)585

δ′ : For a state 〈S,O〉 of B and a letter a ∈ Σ:586

IfO = ∅ then δ′(〈S,O〉, a) = {〈Ŝ, Ô〉 | exists a transition function γ ∈ ∆, such that Ŝ =587

γ(S, a) and Ô = γ(S, a) ∩ α}588

IfO 6= ∅ then δ′(〈S,O〉, a) = {〈Ŝ, Ô〉 | exists a transition function γ ∈ ∆, such that Ŝ =589

γ(S, a) and Ô = γ(O, a) ∩ α}590

α′ = {(S, ∅) | S ⊆ Q}591

Observe that the breakpoint construction determinizes the universality of A, while592

morally keeping its nondeterminism as is. This will allow us to show that Eve can use her593

history-deterministic strategy for A also for resolving the nondeterminism in A′.594

At this point we need Lemma 22, guaranteeing a strategy τ : Q× Σ∗ → B+(Q) for Eve.595

At each step, Eve should choose the next state in A′, according to the read prefix u and596

the current state (S,O) of A′. Observe that τ assigns to every state q ∈ S a set of states597

S′ = τ(q, u), following a nondeterministic choice of δ(q, u); Together, all this choices comprise598

some transition function γ ∈ ∆. Thus, in resolving the nondeterminism of A′, Eve’s strategy599

τ ′ is to choose the transition γ that is derived from τ .600

Since τ guarantees that all the paths in the τ -run-tree of A on a word w ∈ L(A) are601

accepting, the corresponding τ ′-run of A′ on w is accepting, as infinitely often all the A-states602

within A′’s states visit α. J603

I Theorem 24. The translation of a GFG ABW or GFG ACW A to an equivalent DBW604

or DCW, respectively, involves a 2Θ(n) state blow-up.605

7 Conclusions606

GFG in alternating automata is the sum of its parts. Through studying the various607

definitions of good-for-games and their generalizations, a common theme emerged: each608

definition can be divided into a definition for nondeterminism and a definition for universality,609

and the conjunction of these suffices to guarantee good-for-gameness. For example, it suffices610

for an automaton to compose with both universal automata and nondeterministic automata611

for it to compose with alternating automata, even alternating tree automata. In other612

words, good-for-games nondeterminism and universality cannot interact pathologically to613

generate alternating automata not good-for-games, and neither can they ensure good-for-614

gameness without each being independently good-for-games. This should in particular615

facilitate checking whether an automaton is good for games, as it can be done separately for616

universality and nondeterminism.617

Between words, trees, games, and automata. Good for games automata allow us to618

go between word automata, tree automata, and games. In the recent translations from619

alternating parity word automata into weak automata [?, ?], the key techniques involve620

adapting methods that use finite one-player games to process infinite structures that are621

in some sense between words and trees, and use these to manipulate alternating automata.622

These translations depend, implicitly or explicitly, on the compositionality that enable the623

step from asymmetrical one-player games, i.e. trees, to alternating automata. Studying624

good-for-gameness provides us with new tools to move between words, trees, games, and625

automata, and better understand how nondeterminism, universality, and alternations interact626

in this context.627
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A Additional Proofs628

Proof of Lemma 9. For the first direction, we assume that the nondeterminism in A is629

history-deterministic, witnessed by a strategy τE of Eve. Then Eve wins her letter game by630

following τE , since if Adam plays a word w ∈ L(A), then the resulting play of the letter game,631

consisting of a sequence π = b0, b1 . . . of transition conditions and a word w = w0, w1 . . .,632

induces a play in G(w,A) that agrees with τE . Since τE witnesses the history-determinism633

of A, such a play must be winning, that is, π restricted to Q must satisfy A’s acceptance634

condition.635

Symmetrically, if the universality in A is history-deterministic, witnessed by a strategy636

τA of Adam, it induces a winning strategy for him in his letter-game.637

For the converse, assume that Eve wins her letter game with a strategy s. We argue that638

this strategy also witnesses the history-determinism of the nondeterminism in A, namely639

that Eve wins Gs(w,A) for every word w ∈ L(A).640

Indeed, if a play π ∈ Gs(w,A) does not satisfy the acceptance condition of A while641

w ∈ L(A), then the play in Eve’s letter game in which Adam plays w and resolves universality642

as in π would both agree with s and be winning for Adam, contradicting that s is winning643

for Eve. The nondeterminism of A is therefore history-deterministic.644

Symmetrically, if Adam wins his letter game with strategy τA, the universality in A is645

history-deterministic, witnessed by τA. Hence, if A is compliant with the letter games, it is646

also history deterministic. J647

Proof of Corollary 10. Since the letter game is a finite ω-regular game, its winner has a648

finite-memory strategy. J649

Proof of Proposition 11. For every word w, the model-checking games G(w,A) and G(w,A)650

are the same, just switching roles between Adam and Eve. Thus, the history-deterministic651

strategy for Adam in A can serve Eve in A and vice versa. J652

Proof of Proposition 12. It is enough to show that changing any transition condition of an653

alternating automaton A to DNF does not influence its history determinism for Eve/Adam.654

Assume that the nondeterminism in A is history-deterministic, witnessed by a strategy τ655

of Eve. Let A′ be an automaton that is derived from A by changing any transition condition656

b of A, for a state q and a letter a, into its DNF form b′. Let k ∈ N be the depth of alternation657

between nondeterminism and universality in b.658

We show that Eve has a history-deterministic strategy τ ′ for A′, by adapting τ . We call659

local b-strategy a way of resolving the nondeterminism in b. First observe that for every local660

b-strategy s, there is a corresponding local b′-strategy s′ that chooses the set of states that661

Adam can force in k steps over b if Eve follows s; conversely for every local b′-strategy s′,662

there is a corresponding local b-strategy s such that the set of states that Adam can force in663

k steps over b if Eve follows s is exactly Eve’s choice in s′.664

The strategy τ ′ can then be defined by replacing b-local strategies from τ with the665

corresponding b′-local strategies. More precisely, for every history (h′, u) ∈ (B+(Q))∗ × Σ∗,666

we have that τ ′(h′q, u) is the b′-local strategy corresponding to τ(hq, u), where h is the667

sequence of transition conditions derived from h′, by replacing the b′ transitions consistent668

with a b′-local strategy s′ with the b transitions consistent with the corresponding b-local669

strategy s. Since the corresponding local strategies only differ in the paths taken within b670

and b′, but not in the resulting states reached, τ ′ preserves Eve’s victory.671

The arguments for the other direction, that is assuming that the nondeterminism in A′ is672

history-deterministic, and proving that this is also the case for A, are analogous, and so are673

the arguments for how to adapt a history-deterministic strategy for Adam. J674
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Proof of Lemma 13. Assume A is compliant with the letter games but that for some Σ675

arena G, the game on G with winning condition L(A) and the synchronized product G×A676

have different winners. If Eve wins in G, then she can combine her winning strategy τ in G677

and her winning strategy τ ′ in her letter-game to win in the synchronized product G×A:678

she resolves the choices in G according to τ , thus ensuring that the play in G×A follows a679

path of G labeled with a word accepted by A. Then, she can resolve the nondeterminism680

in A according to τ ′. Since τ ′ is winning in the letter game and all plays agreeing with τ681

follow a word in G that is in L(A), all plays agreeing with the combination of τ and τ ′ are682

accepting.683

Similarly, if Adam wins in G, his strategy in G and in his letter game combine into a684

winning strategy in the product G×A. J685

Proof of Lemma 18. Since universal automata is a subclass of alternating automata, one686

direction is immediate and we only need to show that if A is good for composition with all687

universal automata, it is good for composition with all automata.688

Assume that A is good for composition with universal automata. We will show that689

A composes with any game G with acceptance condition L(A). Assume Eve wins in G.690

Let G′ be the game induced by a positional winning strategy s for Eve in G, seen as a691

universal automaton on the singleton alphabet. Since A composes with universal automata,692

it composes with G′, and Eve has a winning strategy s′ in G′ ×A. Then, Eve’s strategy in693

G×A consisting of using s to resolve the branching in G and s′ to resolve the nondeterminism694

in A is winning. If Adam wins in G, then his winning strategy in G×A resolves the branching695

in G according to a winning strategy. This forces the play to follow a word not in L(A). Eve696

has no accepting run in A for such a word and therefore can not win in G×A against this697

strategy. J698

Proof of Theorem 21. The argument below corresponds to a DWW A, and stands also for699

a DFA A.700

By [?], a minimal DWW for a language L(A) has a single state for every Myhill-Nerode701

class of L(A). By Lemma 20, A has at least one state for each such class, from which the702

claim follows. J703

Proof of Theorem 24. The lower bound follows from [?], where it is shown that determiniz-704

ation of GFG NCWs is in 2Ω(n). It directly generalizes to GFG ACWs, and by dualization to705

GFG ABWs: Given a GFG ACW A, we can dualize it to an ABW B, which is also GFG by706

Proposition 11. Then, we can determinize B to a DBW D and dualize the latter to a DCW707

C equivalent to A.708

The upper bound follows from Lemma 23, getting an O(3n) state blow-up for translating709

a GFG ABW to an equivalent GFG NBW, and then another quadratic state blow-up, due710

to [?], from GFG NBW to DBW. For determinizing a GFG ACW, we have the same result711

due to dualization and Proposition 11. J712
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